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The concept of internal rotations in ferrosuspensions is shown to make possible 

the explanation of a number of hydrodynamic phenomena in magnetic fluids 
in the presence of rotating magnetic fields, and the prediction of qualitative 
peculiarities of mass transfer and of electrical conductivity of suspensions with 
rotating particles. It is shown that the convective mass transfer near rotating 
particles results in the relative increase of the effective coefficient of diffusion 
in suspension in proportion to the square of the P&let number determined by 
particle parameters. The possibility of appearance in suspensions of coherently 
rotating particles of an effect similar to that of the Righi -Leduc of heat cond- 

uction in a magnetic field is indicated. The part played by convective trans- 
port in suspensions of coherently rotating parts is also illustrated by the exam- 

ination of electrical conductivity of suspensions of spherical particles in a 

weakly conducting dielectric medium. 

Hydrodynamic phenomena in magnetizable and polarizable media in the presence 
of rotating fields and of internal rotations irrluced by these were investigated in [l-9]. 

It was shown in [l-4] that the rotation of particles in a rotating field, due to the finite 

time of magnetization or polarization relaxation, generates a macroscopic motion of 
the medium only in the presence of moments of stresses induced by the diffusion of the 

internal angular moment. Experiments had shown [5] that, contrary to opinions expre- 
ssed in [6], the macroscopic motion of medium with rotating particles occurs only in 

the presence of three-dimensional inhomogeneities. Motions of magnetizable suspen- 
sions in a rotating magnetic field in the presence of moving boundaries was investigated 

theoretically in [7,8] and experimentally in [5,9]. The effect of particle rotation the 

improvement of the effective coefficient of diffusion in the motion of blood WLIS estim- 

ated in [lo]. 

1. The effective coefficient of heat and mass transfer may be considerably incre- 
ased in suspensions with rotating particles. Below, the effective coefficient of diffus- 

ion is determined for a suspension of spherical particles of radius a coherently rotating 

at the angular velocity o = (0, 0, a). The convective transfer is, unlike in [lo], 

considered with allowance for three-dimensional velocity distribution near rotating 
particles. Particle surface is assumed to be impermeable to the diffusing substance. 

The effective coefficient of diffusion is determined by averaging over cells. 
Let at some distance from a uarticle the concentration di.%ribution be defined by 

c = co + Gxx’ + G,y’ + Gzi , and the equation of mass transfer be of the form 

(vV)c = Dnc, v = a3 [a x r’] r’-3 ( 1.1) 
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The solution of Eq. (1.1) with boundary conditions 

ac -I art r’=a 
= o, c ~rt--roo = co + Gizi' 

is obtained in the form 

c = co + R, cos +G, + Re (R sin 6 ~9) G, + Im (R sin 6e*T) G, 

where 6 and Cp are angles of the spherical coordinate system whose polar axis lies 
along the z’ -axis. After separation of variables, for functions Re and R, we 

obtain equations 

(1.2) 

(1.3) 

where r = r’a-’ is the dimensionless distance from the particle center and P is 
the P&let number, 

By the introduction of new variables u and t in conformity with formulas R 
= r-% u, t = rmv’ Eq. (1.2) is reduced to the equation of modified Bessel functions 

As the result, we obtain a solution of Eq. (1.2) of the form 

R = r-‘Is IA,I, @r-l/n) + A, K, @r-‘/z)], J, = 2vp 
(1.4) 

where I, and K, are modified Bessel functions of the first and second kind and con- 
stants A, and A, are determined by the boundary conditions 

K3 (h) -t- h& (h) 
Al = - As I3 (h) + >.I,’ (h) ’ 

A2 = a (h/2)” 

The corresponding solution of Eq. (1.3) is of the fornl 

R, = a (r -I- 1/2r-2) 

As the result of averaging the obtained solutions, we obtain formulas for averaged 
quantities which determine the behaviour of suspension in the macroscopic scale. As 
the averaging volume we take a sphere of radius I, with 21 equal to the mean distance 
between suspension particles. For’ the mean concentration gradient over the Cdl 

(Vc> = V-’ s VcdV = V-l Cj cndS 

using (1.4) and (1.5) we obtain the formulas 

<Vc>,,, = G,,v (1 - 1/zP2q?l*) 7 G,,,P+ 

<Vc>, = G, (1 t- llzcp) 

(1. ‘3) 
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accurate to terms of second order of smallness with respect to 
((al-‘)s = q .) 

P@ P > 1 , and 
where Cp is the portion of particles by volume. 

For high P@ the effect of particles on one another is significant, and an exten- 
sion of boundary conditions to infinity becomes impossible. The averaging of the total 
mass flow J = -D1_i7 c -I- vc is effected according to formula 

(Jki ’ = v-1 * J@w = v-1 -&XkJi)dV I \ 2 

Taking into consideration (1.4) and (1.5), and that at the cell surface J,, = 
-Da-‘dcldr , for the averaged flow J we obtain 

(Jx2..!,) = -DG,,!, (1 + llzP’~“:*) 

<J,) = --DGz (1 - cp) 
when (VC>, = 0 , taking into account (1.6) and (1.7) we have 

(J,) = -D~V,Pq+ <Vc),, 

(1.7) 

(1.8) 

<J,> = -D (1 -1- 3/4P2cp”~)(Vc>, 
\‘J,> = -D (1 - “i2cp)<Vc), 

Formulas (1.8) show that in a suspension of coherently rotating particles an effect 
is present which is similar to the Righi-Leduc effect of heat conduction in a magnetic 

field and consists of the appearance of a flow in the direction normal to the macrosco- 

pic concentration gradient and to the angular rotation velocity of particles. The obt- 

ained form of dependence of the effective diffusion coefficient in the second of form- 
ulas (1.8) corresponds to that given in [lo]. The third of formulas (1.8) shows that 
in the direction of particle rotation the effective diffusion coefficient corresponds to 

the known formula for that coefficient in the case of suspension of impenetrable parti- 

cles (*). 
The transfer phenomenon in a heterogeneous system is, according to [Ill, determ- 

ined by the flow averaged over the surface. In this case 

r J,dS = Znk <Jk) 
i: 

&ere 2 is an arbitrary section of a spherical cell by a plane, n is a normal to 
that section, and <J> is the flow averaged over the volume in conformity with the 

indicated above procedure. 

2, The indicated peculiarities of the transfer phenomenon in suspensions or rotat- 
ing particles may also occur in the field of electric charge transfer. Let us consider 

a suspension of spherical particles of radius a in a medium whose permittivity and 

conductivity are ai and yi , respectively. The permittivity and conductivity of 

the solid phase are, respectively, E, and yz . We examine the effective coeffic- 

*) Martseniuk, M. A., 
in a magnetic field. 8-th Conference on Magnetohydrodynamics, Riga. Report Theses, 
Vol. 1. Riga, ” Zinatne”, 1975. 
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tate at angular velocity 0 , and the electrical Reynolds number, which represents 
the ratio of convective and conductive transfer of an electric charge [12], is fairly 
high. 

If E, defines the homogeneous electric field at infinite distance from a parti- 
cle, the potential of the electric field near that particle is determined by the Laplace 
equation with boundary conditions at the particle surface [12] and at infinity 

D nl - Dns = 4na, $I= $2, $ Loo = - (W (2.1) 

D= EE, E = -V$, i = yE, j =rs [oxr] 

- (R sin S)+ & 
ai, 41) (j* sin 6) - (R sin 8)-l a’p = Ln 4s) - 2, 

(0 = (~0, O), Eo = (0, E,, E,)) 

The solution of the problem is of the form 

$1 = - (Ear) + Ad (Eg) rm3 + Ba3E, [e, x F] P, . r > a (2.2) 

$2 = C (J&r) + J% [e, x rl, r \< a 

A = ?tz” - YP + (a” - 817 (W2 
1 + (W2 

B = 3 (%‘l”QO - ‘ho’%‘) mt 
1 + (av 

, c = _ 3 yp + elo (or)2 
1 + ((9 

1 h+ e2 z =4x zy,+Tz 

ek Yk 

ekO= Ze,+e, ’ Yko= 2y,+ys ’ k=l,2 

where z is the charge relaxation time and w-c has the meaning of the electrical 

Reynolds number [J.Z]. 
The effective coefficient of electrical conductivity of suspension is obtained by 

averaging the conduction current over the volume containing many particles,and the 
convection current (TV averages over the surface of spherical inclusions contained 

in the considered volume. The total averaged current in the suspension with both 

mechanisms of electric charge transfer taken into account may be defined as 

(I)k = - yl(v$),k fV-'yl s $nkds+ v-l s x&‘dS 
ZSi ZSi 

((I) = V-l 1 idV + V-l Ai jdS, (VI#) = V-l 1 V@W) 

(2.3) 

where (V$> is theelectricpotential gradient averaged over the volume. On the 
assumption of equality of surface and volume averages it can be calculated for a 
heterogeneous system by averaging over a plane whose characteristic dimension is 
considerably greater than the mean distance between particles. In the case of diluted 
system when the perturbations of the field by particles can be considered as additive, 

with allowance for (2.2) we obtain 
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@#ndS = - Eoz (S - 8) + E&X (2A i_ C) - 3BEo,Z 

Z = r 71 (Us - Zip), 
i 

n == (0, 0, 1) 

where n is a normal in the averaging plane, Zi is the distance of particle center to 
the plane, and summation is carried out over the totality of particles whose centers 

lie at distance ) zi 1 < a from the averaging plane, Taking into account formulas 
(2.2) and that for uniform distribution of particles 2 = Scp . from the last equality 
we have 

~VtpdS = -Eoz S - 3SvBEo, + 3ScpAEoz, n = (0, 0, 1) (2.4) 

Similarly 

~Vtp~dS = -EoVS -I- 3q7SAE,, + 3cpSBE,,, (2.5) 
n=(O, 1, 0) 

s V$ndS = 0, n = (1, 0, 0) (2.6) 

For the electric current averaged over a plane of area S and normal n = (0, 
0, 1) 

(summation in the second term is carried out over the totality of contours of intersect- 

ions of the plane with spherical particles) on the assumption of additiveness of pertur- 
bations of the electrical potential contributed by individual particles, we obtain 

1’; <I,> = Moz (S - 2) - (~4 + Y& - w’t (2~1 + ~a) B) x’ 

=or + (2~1 + y,)(l + wr (A + (610 - e8))EoJ 

where the last expression yields S (I,> = ylSEoz. 
Similarly by averaging over a plane with normal n = (0, 1, 0) we obtain 

W,> = yrSEo,c Using formulas (2.4) and (2.5) and assuming the quality of 

gradients of volume and surface averages with (V$>, = 0, we obtain 

Eo, I- --@4,>z3~B, Eo, = -(b), (1 + 3qA) 

accurate to first order terms with respect to the volume portion of particles, and, 
respectively, for components of the surface-averaged current we have 

<I,> = -_n<V$>z (1 + 3qA), <I,) = -_yl <‘W>z 3cpB 

which, as can be readily shown, is the same as the volume averaging by formula (2.3). 
The current averaged over an arbitrary oriented plane with the normal II Wing to 

‘the equation div i = 0 in solid and liquid phases, and boundary condition (2.1) is 

determined in accordance with the relation 

S (1,) = s i,dS + 1 i& = n, (II,: + n, (1,) 
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It follows from the derived laws of electrical conductivity of suspensions of rotat- 
ing particles that for the effective coefficient of electrical conductivity the following 
formula is valid: 

Ye=YiU +3%41 

The transfer of electric charge in similar media is, moreover, associated with the 
effect that is similar to theRighi -Leduc effect, i. e.with the presence of electric 

current that is transverse to the macroscopic electric field and to the angular velocity 
of rotating particles. 
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